[pageinfo chapter=”body” chapnos=”3″ chaptitle=”Body”/]

[toc /]

As a physical thing

Our bodies are clearly physical things, skin and bone, muscle and tendon.  Some of our physiology can be understood in terms of the physics or engineering of the body.  Muscles on our upper arms operate on the lower arms using pivots (joints) and levers.  When we run fast our muscles need more oxygen, so we breath faster and deeper in order to get more air and our heart beats faster to distribute oxygen.

We have limits on how far and fast we can reach, how accurately we can point, how strongly we can grasp.  Sometimes we do not notice the limits of our own bodies as we surround ourselves with chairs of the right height, steps that are not too steep, objects that we can lift (limited by health and safety regulations).  However, if we step beyond the bounds of our constructed environment, to climb a mountain or swim in the sea, our limitations are brought sharply home to us, we work within them or perish.  Even in the safe environment of our home, it only takes a small muscle strain to realise how complicated everyday actions are, how many movements we make for the simplest task.

For the elderly, or those with physical disabilities, these complications are ever present and often require special aids, from electric stair lifts to rubber cloths for opening jars. However, it is not only the elderly and infirm who use technology to go beyond the limits of their own bodies. When you drive in car, ride a lift, or even press the button on a TV remote, you are substituting mechanical, electrical or digital means for simply walking. A forklift truck helps you to lift more, a mobile helps you talk further, and a spreadsheet helps with arithmetic.

Assistive technology

Assistive technology in the home has tended in the past to be relatively low-tech, but that is changing with automatic windows and doors operated by remote control and sensors carried on the person or in the environment triggering alarms for relatives or carers.  For example, video cameras can be programmed to learn normal movement patterns and so detect unusual activity, perhaps after a fall.

This technology is often installed with the promise of greater independence, especially important with most western countries facing an aging population and potential ‘demographic timebomb’; allowing people to live longer in their own homes, or at specially designed independent living units can improve quality of life and reduce demands on human services. However, the impact can often mean reduced face-to-face contact with real humans and for those under the surveillance of motion detectors and under the glare of automatic lights, the very technologies intended to promote independence can seem more like intrusion.

Sometimes we can use the limitations of the body as an explicit resource in design.  The sweetie jar on a high shelf puts it out of reach of a small child and the lids of medicine bottles are similarly designed to make it difficult for a child to open.  For adults too, physical limitations can enforce constraints: In a nuclear bunker the two ‘fire’ buttons are placed too far apart for a single person to press both.  In a digital world, sometimes things are just too easy, anything can happen at the press of a single button.  It is easy to do things and it is easy to do things wrong; like the nuclear bunker, we can deliberately use physical constraints to prevent errors, for example using of recessed buttons to prevent accidentally pressing them.  Perhaps computer keyboards could use haptic technology and have more resistance on the ‘delete’ button when you have a whole document selected compared with just a few words?

Size and Speed

The physical size of our body is crucial in determining how we can interact with the world.  Birds can grip a wall and stand horizontal, but even the most practiced trapeze artist, rock-climber or skier could not hold their bodies horizontally using their ankles alone.

This is because as an animal gets smaller its weight gets smaller proportional to the cube of its height and the distance of its body from the wall decreases with the distance.  The force needed to support it falls off as the height to the power of 4.  If you were half as high you would only need 1/16 of the force to hold your body horizontal, and if you were 1/3 of the height only 1/81 of the force.  Of course, if you were smaller, your muscles would also be smaller, but the ability to exert force is determined by the cross-sectional area of the muscle, which falls with the square of your height.  So if you were ½ the size your muscles could exert ¼ of the force, or 13 of the higher 1/9 of the force – you can see that the muscle force gets smaller much more slowly than the required force, so that it gets easier and easier to support your body.  This also means that bones can be smaller, and lighter, thus increasing the effect.  So for that bird, perhaps 1/20 of your size, it is 400 times easier to hold itself than for you to do the same.

Our physical size also influences the speed we can move. Try this experiment. Stand up and raise one leg in the air.  Hold the raised leg with the knee stiff and start to swing it back and forth – see how fast you can move it before you feel yourself losing balance. Now do the same again, but this time let your knee loose so that your leg can ‘flap’ back and forth. Notice how much easier it is to move quickly when your knee can bend.

This is again simple physics. With your knee fixed your leg is a ‘simple pendulum, like the pendulum in a grandfather clock, whereas when your leg can bend it is a ‘compound pendulum: one pendulum (your upper leg) with another (the lower leg) joined on. Each pendulum has a ‘natural frequency’, the speed it would move back and forth if you didn’t force it with your muscles, but just let it flop. It turns out that a longer stiff simple pendulum has a slower natural frequency than if it is divided into two halves as a compound pendulum. In general, it is easy to make a pendulum work at its natural frequency, think of pushing a child on a swing, you time your pushes to coincide with the natural movement of the swing. However, one has to work harder to make a pendulum work faster or slower, try making that child swing back and forth slightly faster or slower than the swing wants you to. This is why we bend our legs as we run; the natural rhythms dictated by the size of our bodies are faster.

Just walk

The natural frequency of a simple pendulum is 2 π √(L/g), where L is the length of the pendulum. For our legs, the weight is relatively evenly spread, with slightly more in the upper leg muscles. So the effective length to the centre of gravity is around 30cm, giving a natural frequency of about a second.

So, the speed we can move or limbs, and hence the speed with which we walk and run, is directly related to the lengths of our legs (and indeed our torso and arms as they keep pace). Bridge designers have to take these natural rhythms into account and try to avoid bridges that bounce up and down with a frequency of near a second. This is also why soldiers break step when crossing bridges for fear that all walking together can cause it to build up a wave of motion.

The designers of the Millennium Bridge over the Thames forgot that whilst the up-and-down pace of normal walking is about 1 second, the side-to-side pace as we swop weight form one leg to the other is twice this, around 2 seconds, or a frequency of 0.5 Hz. Unfortunately the bridge had a side-to-side natural swaying frequency of precisely 0.5Hz! This would not have been so bad were it not for the fact that when we are on a swaying structure we tend to fall into step with it to keep ourselves upright, so that those walking across became rather like a single line of marching soldiers.

In order to be able to walk at around 1Hz, or one pace per second,  our brains will need to be able to drive muscles at this kind of pace (and faster for running).  This may well affect the way we can keep time.  Orchestral conductors say that the slowest beat they can reliably keep is about 40 beats per minute; that is about that of a very slow walking pace.  While we often think that we dance to music, it may well be that it is the other way round; our natural sense of rhythm comes form the length of a typical leg. We don’t dance to music, we music to dance.

The networked body

At the other end of the spectrum, the fastest speed at which a highly practiced person can tap their finger is around 10 beats per second, with most of us much slower. Try it with a stopwatch. To get faster rhythms a drummer will use two hands, or a pianist several fingers. Even our tongues can’t move arbitrarily fast. Or try counting out loud 1 to 10 again and again as fast as you can.  Can you get an average of much faster than 5 or 6 counts per second?  Here the limits are not to do with the match of length and gravity as in a pendulum, but the raw speed of muscles.  However, this is possibly due to another set of physical processes in our bodies.

When you want to move your hand signals pass from your brain down your spinal column to the 5th–8th vertebrae, then along a nerves to the muscles in your arm.  If you watch your hand you can see where it is, or if it touches something, you can feel it touch.  However, it also takes time for signals to pass from your eyes through several layers of nerves to your brain or for the signals from the touch receptors in your hands to pass up to your brain. Altogether the round trip from sending the signal to seeing or feeling what happens takes around 150-200 milliseconds.

How quick are you?

You can measure this round trip time for yourself. Take a piece of paper (A4 or US letter) and make a mark near one end. Hold the paper at the opposite end to the mark, with the mark downwards and get a friend ready to catch the paper with their fingers initially placed by the mark. Ask them to catch the paper when it falls, then let go. Mark on the paper where they caught it. Do this several times, each time they will catch it a slightly different place.

[figure]

photo?[/figure]

The average distance between the mark and where they catch it tells you the total reaction time, from seeing the paper move, to actually moving their fingers. You can work this out using the speed of fall (1/2 g t2):

reaction time distance fallen
100 ms 5 cm
150 ms 11.25 cm
200 ms 20 cm
250 ms 31.25 cm

If your friend is very canny, they may notice your fingers start to move just before they open, so you may need to hold a piece of paper covering your hand.

As an alternative test get them to keep their eyes closed, but have the paper touching one of their fingers so they can feel it begin to fall.  Do they do better or worse?

Then try doing a countdown: say out load 3, 2, 1 and then drop the paper. See how much faster they are when they can time their movement to coincide with yours rather than waiting to see the paper fall.

These delays in your body are similar to those in a computer network and about the same as the round-trip time Internet signals take if you are accessing a web site in your own country (intercontinental times are more like 150-200ms in each direction).  Although 200ms sounds fast your arms can move a long distance in that time, and a fast tennis ball, baseball or cricket ball would move 8 metres.  Because of this skilled sports players work predicatively, their brains working out where the ball will be when it is close to them and then ‘telling’ their arms where to move to meet the ball when it comes – there is simply, not enough time to see the ball coming when it is close.

Adapting IT to the body

The importance of understanding the human body in interacting with technology predates digital technology.  The field of ergonomics can be traced back to the mid 19th century or even Ancient Greece [[Ja57, MP99]], but the modern fields developed in the 20th century especially during the Second World War.  The field originally focused on the body and physical movement: the appropriate height of a desk or a kitchen worktop, and the layout of controls in a car are all in the purview of the ergonomist, and we are used to seeing products advertised with ‘ergonomically designed’ handles or controls.  However, by the early 1980’s a sub-area of ‘cognitive ergonomics’ had formed, including cognitive issues alongside the physical body.

[figure]

ergonomics-homunculus

Using homunculus to design furniture

[/figure]

Effective ergonomic design is important for comfort and enjoyment – we all know the feeling after sitting in an uncomfortable seat during a long meeting.  However, more important are the implications for health and safety. For a pregnant woman or someone with back problems, poor posture is not simply a matter of comfort.  If you have to reach a long way to get the HiFi controls on a car, you may not steer a straight course, and not be as fast to react.  For regular computer users RSI has become endemic and this has spawned a whole range of special ‘ergonomic’ keyboards, although the increasing use of laptops has made it more difficult to obtain the optimal screen an keyboard configurations.

While ergonomics was one of the foundation disciplines of human–computer interaction, this is perhaps less evident in recent years were aesthetics of design often dominate over fit to the human body. For example, the older curvy Apple laptops had a trackpad in front of the keyboard with the ‘mouse button’ for it on the front edge of the computer. However, the button moved on later laptops to be next to the trackpad and on the top. The older design allowed the thumb to be used to squeeze the button in a natural grasping action, whereas the later designs required thumb to press sideways and outwards, a very unnatural action. Furthermore, to avoid the thumb touching the trackpad and the arm has to be held with the elbow twisted away from the body.

On the positive side, effective placement and shaping of controls can make physical tasks effortless and easy to learn. In an experiment Jo used different design tools to create several designs to the same brief [[DG10]]. One of the designs started out using hand-moulded clay and ended up rather like a small pebble with a depression on one side.  Without any instructions when one picks up the pebble it just naturally falls into your hand in the right direction.

[figure]

 

 Stone-like shape moulded in clay naturally fits the hand; then transformed from clay to CAD and from CAD to 3D printed resin.

[/figure]

[web] TV remote case study [/web]

the body as interface

Archaeologists often try to understand a society from its material remains; in this vein, more than 20 years ago Bill Buxton imagined what a visitor from another planet would infer about the human species from the evidence of a standard graphical user interface. There would of course be a single large eye (single as a single screen does not use binocular vision), a hand for moving the mouse and a single (for the Mac) or perhaps two fingers for pressing mouse buttons.  Other fingers were needed for typing (although most of us manage with three) and a rather limited ear for hearing the odd beep.  In contrast, a most musical instruments use a nearly full range of fingers, and in the case of the organ and drum-kit, also two feet.

need to contact bill for reference to this

[figure]

image of Buxton homunculi[/figure]

Buxton was early in advocating the use of both hands (and sometimes other limbs) for input, but in recent years multi-finger and multi-hand has started to become mainstream. The iPhone and similar devices use two-finger gestures to shift, stretch and scroll content and large displays such as Microsoft surface can use fingers on both hands, or indeed several peoples hands.

Touch-based devices have a natural scale determined by the size of the human body: hand contact limits one to stretches of around a yard/meter from the body for horizontal surfaces, and a little more (allowing for knee bends and arms stretching) for vertical ones. Larger displays require physical movement along the display, or some form of indirect interaction.

Effectively any display has a natural distance for viewing so that it does not take too wide or too narrow viewing angle, typically between 20 and 45 degrees. Too wide means you have to move your head excessively and, if the display is flat, a very oblique viewing angle. Too narrow means only limited information can be displayed. There are exceptions, a wrist watch has a small display because it has to fit on your arm and correspondingly has limited display resolution. At the other extreme a virtual reality CAVE can produce 180 to 360 degree panoramas, but where one is expected to look around.

[figure]

diagram from paper with Aaron and Lucia [/figure]

The combination of distance and angle creates a rhomboidal space, usually from one to three screen widths wide within which it is sensible to see the display(more details in Chapter [[ch:digital-augmentation-of-space]]). If the distance to the display is too large, interaction will normally need some sort of remote control device, for example, the TV control at home or the long sticks used to move aircraft in WWII air force control rooms. The size of the area also determines how many people can see a display at the same time.

[figure]

The Operations Room at RAF Fighter Command’s No. 10 Group Headquarters, Rudloe Manor (RAF Box), Wiltshire, showing WAAF plotters and duty officers at work, 1943.  Imperial War Museums (image CH 11887)

[/figure]

The body is not just used for touching. In gesture-based interfaces cameras track the position of arms and hands so that one can make gestures, to control a computer system, either alone or in combination with voice commands “put that there (points)”. Gestures can also be tracked using devices we hold, as in the case if the Wii-mote and phones with accelerometers.

GPS enabled devices or instrumented public spaces allow a level of interaction that is governed by the movement of your body through space. With a Google map on a fixed PC you navigate through the map by using zoom and pan controls, but with a Sat Nav the navigation on the map is driven (literally) by the motion of the car.  Proximity-based technology such as Bluetooth, WiFi or your mobile phone cell NFC reader also offer ways to create interaction that is either modified by the context or triggered by it (e.g. location specific adverts!). The use of this kind of system has clear uses in tourist guides and is also finding applications in various forms of games.

Although not very ‘interactive’, biometrics are another way in which the body is used as part of technological interactions, in this case for authentication rather than control. These all depend, to some extent or other, on the large range of individual differences between people, whether purely physical such as a finger print or iris scan, or involve some skill or habit, as in a signature. To be useful the feature used needs to be (i) different enough between people and (ii) stable enough over time so that the same person can be reliably recognised. What counts as ‘enough’ depends on the situation, and depends critically on whether one is seeking (a) to verify someone is who they say they are, or (b) to locate/identify who someone is based on the feature.

These issues have become critical in several cases where DNA evidence is used in court.  If the DNA ‘fingerprint’ is unique to 1 in a million, then matching the DNA found at the crime scene with a known suspect is ample evidence.  However, the UK police database contains over 5 million samples [[HO09]].  Matching against this would be likely to find a match by random chance and might suggest a few people to check, but certainly would not be strong evidence.

Similarly for the “stable enough over time” criteria, the use of biometrics, for example, by USA border controls to match those leaving the country with their entry only requires stability over weeks or months. However, most security analysts doubt that the combination of accuracy of scanning equipment and stability of features is sufficient to make effective biometric identity cards … whether or not one regards that as desirable anyway.

As carrier of IT – the regular cyborg

For many years researchers in wearable computing, and notably Steve Mann have walked around with cameras strapped to their heads, screens set in eye glasses, computers in backpacks. Over the years the technology has become smaller and more discreet, but for most observers there is still something odd about these ‘cyborgs’, who so intimately tether technology to their bodies.

[figure]

Steve Mann – three decades of early cyborg research

(image source: https://commons.wikimedia.org/wiki/File:SteveMann_30_years_of_WearableComputing_and_AR_in_everyday_life.png)

[/figure]

But is it so unusual?

In the introduction we asked, “How many computers in your house?”.  Similarly you can ask how many computers on your body? Empty your pockets, bag or whatever you carry with you normally. Count the computers. You will probably have a mobile phone, USB memory stick, or maybe a smartwatch. If you carry a separate camera it too will have computers even if it is a film camera; a car key with remote locking has a computer to generate unique changing key sequences. Reach into your wallet and you will find smart chips and a magnetic stripe on each card. You may even have a hearing aid in your ear, or if you have heart problems a computer inside you in a pacemaker. How many computers?

[figure]

photo of pile of things from pockets [/figure]

We are all cyborgs.

The use of physical prostheses is, of course, not new; walking sticks have probably been around as long as people and the first use of splints dates back to the fifth Egyptian Dynasty nearly 5000 years ago [[Be09]]. The core difference is that the new technologies are mainly information prostheses, helping us think or communicate better. However, the two have been coming together with increasingly sophisticated medical prosthetics that use digital technology to sample tiny muscle movements or nerve signals and use these to control robotic limbs.

The riddle of the Sphinx

The Sphinx asked passing travellers “What creature walks on four legs in the morning, two legs at noon, and three legs in the evening, but is weakest when it has most legs”. Oedipus answers realises the answer is a man who crawls on all fours as an infant, two legs as an adult, and needs a walking stick when old.

People with a pacemaker or internal insulin pump have this implanted for medical reasons and would undoubtedly choose to have them removed were it medically safe to do so. However, there are those who chose to have computers implanted in their bodies.

Various artists, notably Stelarc, an Australian born performance artist, have explored the relationships between technology and the body: ingesting devices, strapping them to their bodies or in various ways insinuating metal into flesh. In one performance Stelarc had electrodes strapped to his skin so that they stimulated the muscles of his arm [[ST09]].  Measurements of network activity were used to drive the electrodes so that as people used computers across the Internet this made his arm jerk and move out of his control.

Kevin Warwick, Professor of Cybernetics at University of Reading, believes that the embedding of digital technology into our bodies is a next inevitable step, and that before long we will all do this through choice [[Wa03]]. Putting this into action he has had various implants including one, which linked nerves in his arm to those of his wife. While he was away on an overseas trip they could feel each other’s movements (but only when the device was turned on!).

If it seems unlikely that people would willing do this outside an academic experiment, it is already happening as in bars in Glasgow, Barcelona and Rotterdam nightclub goers can have a small chip implanted which allows them fast entry and to pay for drinks without having to carry money [[Ma05]].

Compared to this, Steve Mann’s cyborg technology begins to look mundane! Certainly head mounted displays in eye glasses are becoming common for gaming and for ‘serious’ mobile computing offers the potential to create virtual screens far larger than can be accommodated on a phone. However, the discreetness of cyborg technology can have its own problems.

Some years ago Jennifer Sheriddan studied users of wearable technology at Georgia Tech. Because the display in the eye glasses was only visible to the cyborg, the cyborg could be talking face-to-face with someone whilst at the same time perhaps browsing web pages, reading email, or even carrying out a parallel instant messaging conversation.  This could simply be rude, but often the virtual interactions were connected in some way to the face-to-face dialogue, just as one might look up a web page about a topic whilst talking to a friend. She found that the cyborgs had developed various ways to manage potential conflicts, some would say something like “hold on while I check that” before focusing on the web page or email. One cyborg had his head-mounted display arranged so that he had to look upwards at the ‘screen’, so when talking with him it was obvious when he was not ‘there’ as his eyes gazed heavenward.

Jennifer became interested in these three-way interactions and as an exploration she and a technology-art group .:thePooch:. developed a performance “the schizoprenic cyborg” at an arts event [[SD04]]. For ‘normal’ cyborgs, they are in the centre and in control of the three way interactions, but the schizoprenic cyborg shattered this control.  Here the cyborg wore a small display strapped to his waist and wandered round the exhibits at the event. Another ‘hidden’ performer up in a high gallery provided the content of the display. The hidden performer could see from a distance but not hear what was going on, initially the hidden performer would display inviting comments “hug me”, “I’m lonely”, or make comments “you in the red dress”.

When people came to talk to the cyborg they would initially not believe that it was not the cyborg himself controlling the display, and even when they did believe it was a third party still interacted in ways that did not fully take into account the distinction, or if they did, might ignore the cyborg wearing the display and focus on the screen. We normally expect a single area of space to hold just one person. The participants were faced with a single space that in a sense ‘held’ two people, the cyborg himself and the hidden performer. In self reports later, the cyborg repeatedly used language that alternated between first and third person accounts of himself suggesting that the experience was equally confusing having someone else apparently occupying the same space as oneself.

[[#bibliography]]

[[Be09]]   Mary Bellis (2009), The History of Prosthetics.  about.com, (accessed June, 2009) http://inventors.about.com/library/inventors/blprosthetic.htm

[[DG10]] Alan Dix, Steve Gill, Devina Ramduny-Ellis and Jo Hare (2010) Design and Physicality – Towards an Understanding of Physicality in Design and Use. In: Designing for the 21st Century: Interdisciplinary Methods and Findings. Designing for the 21st Century, part 2. Gower, London, pp. 172-189. ISBN 9781409402404

[[HO09]]  Home Office.  The national DNA database.  (accessed June 2009) http://www.homeoffice.gov.uk/science-research/using-science/dna-database/

[[Ja57]]  Wojciech Jastrzębowski (1857).  An outline of ergonomics, or The science of work based upon the truths drawn from the Science of Nature. Translation: Danuta Koradecka (ed.), Teresa Bałuk-Ulewiczowa (tr.).  Warsaw : Central Institute for Labour Protection, 2000.

[[MP99]]  Nicolas Marmaras, George Poulakakis, Vasilis Papakostopoulos, Ergonomic design in ancient Greece, Applied Ergonomics, Volume 30, Issue 4, 1999, Pages 361-368, ISSN 0003-6870, http://dx.doi.org/10.1016/S0003-6870(98)00050-7.

[[Ma05]]  Lorna Martin. This chip makes sure you always buy your round.  The Observer, Sunday 16 January 2005. http://www.guardian.co.uk/science/2005/jan/16/theobserver.theobserversuknewspages

[[SD04]]  Sheridan, J.G., Dix, A., Bayliss, A., Lock, S., Phillips, P., Kember, S. Understanding Interaction in Ubiquitous Guerrilla Performances in Playful Arenas. Proceedings of British HCI 2004, September 6-10, Leeds, UK

[[ST09]] STELARC (official website), accessed March 2009. http://www.stelarc.va.com.au/

[[Wa03]] Warwick, K. (2003). A study in cyborgs. Ingenia – Issue 16, Jul 2003. The Royal Academy of Engineering. pp.15-22

[[/bibliography]]

 

Leave a Reply

Your email address will not be published. Required fields are marked *